A Proteolytic Cascade Controls Lysosome Rupture and Necrotic Cell Death Mediated by Lysosome-Destabilizing Adjuvants

نویسندگان

  • Jürgen Brojatsch
  • Heriberto Lima
  • Alak K. Kar
  • Lee S. Jacobson
  • Stefan M. Muehlbauer
  • Kartik Chandran
  • Felipe Diaz-Griffero
چکیده

Recent studies have linked necrotic cell death and proteolysis of inflammatory proteins to the adaptive immune response mediated by the lysosome-destabilizing adjuvants, alum and Leu-Leu-OMe (LLOMe). However, the mechanism by which lysosome-destabilizing agents trigger necrosis and proteolysis of inflammatory proteins is poorly understood. The proteasome is a cellular complex that has been shown to regulate both necrotic cell death and proteolysis of inflammatory proteins. We found that the peptide aldehyde proteasome inhibitors, MG115 and MG132, block lysosome rupture, degradation of inflammatory proteins and necrotic cell death mediated by the lysosome-destabilizing peptide LLOMe. However, non-aldehyde proteasome inhibitors failed to prevent LLOMe-induced cell death suggesting that aldehyde proteasome inhibitors triggered a pleotropic effect. We have previously shown that cathepsin C controls lysosome rupture, necrotic cell death and the adaptive immune response mediated by LLOMe. Using recombinant cathepsin C, we found that aldehyde proteasome inhibitors directly block cathepsin C, which presumably prevents LLOMe toxicity. The cathepsin B inhibitor CA-074-Me also blocks lysosome rupture and necrotic cell death mediated by a wide range of necrosis inducers, including LLOMe. Using cathepsin-deficient cells and recombinant cathepsins, we demonstrate that the cathepsins B and C are not required for the CA-074-Me block of necrotic cell death. Taken together, our findings demonstrate that lysosome-destabilizing adjuvants trigger an early proteolytic cascade, involving cathepsin C and a CA-074-Me-dependent protease. Identification of these early events leading to lysosome rupture will be crucial in our understanding of processes controlling necrotic cell death and immune responses mediated by lysosome-destabilizing adjuvants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death

The Nod-like receptor, Nlrp3, has been linked to inflammatory diseases and adjuvant-mediated immune responses. A wide array of structurally diverse agents does not interact directly with Nlrp3, but is thought to activate the Nlrp3 inflammasome by inducing a common upstream signal, such as lysosome rupture. To test the connection between lysosome integrity and Nlrp3 signaling, we analyzed inflam...

متن کامل

Complete lysosomal disruption: A route to necrosis, not to the inflammasome

Lysosomes and their most abundant hydrolases, the cathepsins, have been implicated in several modes of cell death, including necrosis and apoptosis.1 indeed, lysosomal membrane permeabilization with release of lysosomal enzymes into the cytosol is a feature in many cell death cascades and can either act as a primary trigger or as an amplifier of the death signaling.2 what determines the mode of...

متن کامل

Zinc Protects Oxidative Stress-Induced RPE Death by Reducing Mitochondrial Damage and Preventing Lysosome Rupture

Zinc deficiency is known to increase the risk of the development of age-related macular degeneration (AMD), although the underlying mechanism remains poorly defined. In this study, we investigated the effect of zinc on retinal pigment epithelium (RPE) survival and function under oxidative conditions. Zinc level was 5.4 μM in normal culture conditions (DMEM/F12 with 10% FCS) and 1.5 μM in serum-...

متن کامل

2015A Koh Microbial Cell

Background: Trypanosoma brucei is a blood-borne, protozoan parasite that causes African sleeping sickness in humans and nagana in animals. The current chemotherapy relies on only a handful of drugs that display undesirable toxicity, poor efficacy and drug-resistance. In this study, we explored the use of lysosomotropic drugs to induce bloodstream form T. brucei cell death via lysosome destabili...

متن کامل

The lysosomotropic drug LeuLeu-OMe induces lysosome disruption and autophagy-independent cell death in Trypanosoma brucei

BACKGROUND Trypanosoma brucei is a blood-borne, protozoan parasite that causes African sleeping sickness in humans and nagana in animals. The current chemotherapy relies on only a handful of drugs that display undesirable toxicity, poor efficacy and drug-resistance. In this study, we explored the use of lysosomotropic drugs to induce bloodstream form T. brucei cell death via lysosome destabiliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014